

Hubbell Industrial Controls

Steel Industry – Unbalance in electrical networks & Welding Case Study

Steel industry training – Unbalance in electrical networks

- In a three-phase AC electrical system, unbalance (also known as imbalance) refers to a situation where the RMS voltage or current is not equal between the three phases, or if the phase shift between the phases is not equal to 120°
- Unbalance is usually expressed in percentage value, but its interpretation is based on the definition used; IEC, NEMA and IEEE all have their own definitions for unbalance.
- The most commonly used one is the IEC definition based on negative and positive sequence components:

$$VUF(\%) = \frac{V_2}{V_1} * 100\%$$

$$IUF(\%) = \frac{I_2}{I_1} * 100\%$$

- **HUBBELL** Industrial Controls Division
- In the US, the more intuitive NEMA definition for voltage unbalance is also relevant:

 $LVUR(\%) = \frac{\max voltage \ deviation \ from \ the \ avg \ line \ voltage}{avg \ line \ voltage} 100\%$

- Unbalance can theoretically be caused by asymmetrical generator or power system design, but usually it is always caused by asymmetrical load currents.
- Asymmetrical three-phase loads and unevenly distributed single-phase loads are examples.

- Unbalanced voltage causes electrical motors to draw unbalanced currents which creates opposing fluctuating torques and temperature rise in windings
- With only 1 % voltage asymmetry in electrical motor's terminals, its lifetime is halved. With 5 %, its lifetime is reduced to 5 % of the design lifetime.
- In VSDs, voltage unbalance causes excessive stress on the filter capacitors and may cause the VSDs to trip. It also causes excess heating of semiconductor components in the power stage
- All power electronic devices will produce more harmonic currents and additionally interharmonics with unbalanced voltage
- Warranties for any electrical equipment may be void if standard limits are exceeded

UBOV = Unbalance and over voltage

Steel industry training – Welding case study

Arc welding devices with dynamic reactive power compensation

Industrial Controls Division

- Arc welding devices are often connected to line-to-line voltages and thus naturally cause unbalanced currents in the electrical system, which in turn causes unbalanced voltage
- Welding devices consume significant amounts of rapidly fluctuating reactive power and harmonic currents, which cause voltage fluctuation in the bus also known as Flicker
- Flicker in practice means rapid variation of a light source intensity

Measured supply currents to the welding machine

Measured flicker before compensation

Voltage stabilisation with active filter

Active and reactive power with and without compensation

Supply currents from the network – the maximum current is three times less!

Same figures with the same scale – the maximum current is three times less!

Measured flicker before and after compensation

	Fundamental current		
	Filter OFF		
	L1	L2	L3
	A	A	A
	700	700	50
Approx. relative ohmic losses I ² R	100%	100%	0,5%
	Filter ON		
	L1	L2	L3
	A	A	A
	220	220	220
Approx. relative ohmic losses I ² R	9.9%	9.9%	9.9%

- Active power from 146 kW -> 164 kW ~ 12.3 % increase!
- This means that the client bring 12.3 % more energy in the process in the same time!
- Total ohmic losses are decreased by 80 %
- This means less temperature rise in the feeding transformer and other network components
- By correcting the harmonic distortion and unbalance in voltage, standard limits are met and other technical issues caused by them are avoided

- A welding device draws unbalanced currents in a threephase system because they are connected to line-to-line voltage
- These currents have significant reactive and harmonic content, which can draw the voltage down
- With the APEX active harmonic filter, we can correct these problems, reduce losses and increase the productivity of the whole welding process

www.hubbell-icd.com