

Hubbell Industrial Controls STATCOM and SVC in Steel industry

STATCOM - A controlled current source

- STATCOM is a dynamic compensator
 - Reactive power
 - Harmonics
 - Unbalance
- STATCOM-module can be understood as a controlled current source
 - Capable of producing any current waveform in real-time
 - Structure similar to an APEX active filter but much bigger
- Hubbell module
 - 2MVAR
 - 2 kV
 - Independent control unit

STATCOM - A controlled current source

- STATCOM-system consist of multiple STATCOM-modules
- In typical steel industry applications ~half of the reactive power is taken from filter capacitor bank(s)
 - Filter capacitors typically tuned at some harmonic frequency
- Master controller controls individual STATCOM-modules
 - Response time <1 ms for EAF and LF load changes

Slower control to maintain the desired long term power factor at PCC

SVC – A controlled impedance

- A thyristor valve used to control inductive current through an air core reactor
- The thyristor controlled reactor (TCR) is a controlled impedance
- Hubbell Power thyristor valve
 - Nominal voltage up to 38.5kV
 - Nominal current up to 2500A
 - Nominal 3-phase power up to 250Mvar
 - Efficiency ~ 99.8 %
 - Water cooling, max flow 40 m2 / h
 - Two (2) redundant disck levels
 - Simple disk replacement

SVC - A controlled impedance

HUBBELL Buistion

- SVC system consist of three thyristor controlled reactors (TCR) and multiple filter capacitor banks
 - Filter capacitors typically tuned at some harmonic frequency
- In typical steel industry applications the power range from slightly inductive to capacitive
 - TCR power >= than the sum of the filter capacitor powers
- Master controller controls individual STATCOMmodules
 - Response time one network cycle for EAF and LF load changes
 - Slower control to maintain the desired long term power factor at PCC

STATCOM vs SVC - Overview

Statcom

Controlled current source

$$Q_{STATCOM} = U * I_{AF} = 1 * I_{AF} = 100\%$$

SVC

Controlled impedance

$$Q_{SVC} = \frac{U^2}{Z_{Svc}} = \frac{1^2}{Z_{Svc}} = 100\%$$

STATCOM vs **SVC** – Operation principle

STATCOM

- Capacitor banks produce constant capacitive reactive power
- STATCOM modules produce variable reactive power
 - STATCOM module reactive power is controlled, so the reactive power from the grid is always zero

SVC

- Capacitor banks produce constant capacitive reactive power
- TCRs produce variable inductive reactive power
 - TCRs module reactive power is controlled,
 so the reactive power from the grid is always zero

STATCOM vs SVC - Reactive power output

- STATCOM = controlled current source >
 Reactive power output linearly proportional to the voltage
- STATCOM can be overloaded momentarily
- Unlike SVC the overload can be controlled

$$Q_{STATCOM} = UI_{STATCOM} = 1 \cdot I_{STATCOM} = 100\%$$

$$Q_{STATCOM} = UI_{STATCOM} = 0.9 \cdot I_{STATCOM} = 90\%$$

$$Q_{STATCOM} = UI_{STATCOM} = 1.1 \cdot 2I_{STATCOM} = 220\%$$

- SVC = controlled impedance → Reactive power output proportional to the square of the voltage
- SVC cannot be intentionally overloaded
- Higher than nominal power is only possible when the system voltage is over 1 pu

$$Q_{SVC} = \frac{U^2}{Z_{SVC}} = \frac{1^2}{Z_{SVC}} = 100\%$$

$$Q_{SVC} = \frac{U^2}{Z_{SVC}} = \frac{0.9^2}{Z_{SVC}} = 81\%$$

$$Q_{SVC} = \frac{U^2}{Z_{SVC}} = \frac{1.1^2}{Z_{SVC}} = 121\%$$

STATCOM vs **SVC** – Response time

STATCOM

- Response time determined by the control system speed and IGBT switching frequency
- Resoponse time ~600µs
 - Flicker attennuation factor 5

SVC

- Response time determined by the power system frequency
- Response time one cycle (20ms/16.67ms)
 - Flicker attennuation factor 2

STATCOM vs **SVC** – Redundancy

STATCOM

- Stand alone modules
- One module failure does not stop the system
- Each module has independent cooling system
- STATCOM continues to operate if any or all capacitor banks fail

SVC

- Redundant
- Thyristor discs
- Valve base control outputs
- Cooling system pumps
- Cooling system fans
- Operation possible without highest order harmonic filter

STATCOM vs **SVC** – **Cost comparison**

Arc furnace

- Uses electric arc to melt metal
- Two main categories
 - AC
 - DC
- AC furnace
 - 3 electrodes
 - Transformer between grid and electrodes
 - Higher flicker severity factor
 - Produces harmonics with wide spectrum
- DC furnace
 - One electrode
 - Large rectifier bridge between the grid and electrode
 - Lower flicker severity factor
 - Produces characteristic harmonics

EAF - Flicker

- Voltage variation is caused by variation in reactive power demand
- An EAF causes rapid variation in reactive power demand
- This creates rapid voltage variations → high flicker

$$\Delta U \approx \frac{\Delta Q_c}{S_k}$$

 ΔU = Voltage change ΔQ_c = Change in reactive power demand S_k = Fault level

EAF - Flicker

 Hubbell STATCOM or SVC eliminates reactive power demand from the grid → voltage variation due to the reactive power eliminated

 ΔU = Voltage change

 ΔQ_c = Change in reactive power demand

 $S_k = Fault level$

$$Pst = \frac{Pst_0}{Attennuation\ factor}$$

EAF - Unbalance

- An AC EAF has three electrodes
- When two electrodes short circuit the voltage drops significantly in those two phases due to the high reactive power demand
- Asymmetrical voltage drop creates voltage unbalance (negative sequence voltage) in the grid
- A STATCOM or an SVC can compensate asymmetrical reactive power demand → voltage unbalance eliminated

EAF - Harmonics

- AC furnace creates harmonics with wide spectrum
- DC furnace creates harmonics characteristic harmonics
- Harmonic currents create voltage distortion in the supplying grid and inside factory grid
- Harmonic currents also create excess losses
- STATCOM and SVC compensate harmonic from the furnaces

EAF - Power increase

- An arc furnace is an impedance load
 - Power proportional to the square of the voltage
- Hubbell STATCOM or SVC stabilises the voltage
 - Higher average voltage
 - Higher average power
- Power increase for arc furnace

$$P = P_0 \frac{U^2}{U_0^2}$$

EAF – Tap to Tap time reduction

- Melting process requires certain amount of energy/ton
- Energy injected into the material in the furnace is P x t
- With compensator the average power is higher → less time required to achieve same energy output

Payback components example

- Production increase ~8 10 %
- Decreased electrode consumption due the more stable arc and reduced tap-to-tap time
 - Estimated electrode saving ~0.18kg / ton
 - Average electrode cost in 2019 €10/kg
- Reduced power losses ~2% in total
 - Main transformer losses
 - Other components in the factory's power grid
 - Reduction in radiation losses in the furnace
- Typical payback 2 years

SVC active and passive components

Component	Lifetime (years)
НМІ	8-10
Control system	10-15
Cooling system	15-20
Protection system	15-20
Thyristor valves	20-25
TCR reactors	25-35
TSC banks	25-35
Harmonic filters	25-35
Circuit breakers, disconnectors, CTs, VTs and surge arresters	30-35
SVC transformer	30-40
Building for active part	40-50

Active part

Passive part

SVC Modernization

Extends the useful lifetime of an SVC for decades

SVC Modernization

- Majority of SVC suppliers do not deliver partial modernisations or retrofits of existing SVCs
 - Modernisation = renewal of existing equipment
- Hubbell SVC Core Technology Concept permits the upgrade of only some components in an existing SVC
 - Hubbell Power delivers new active components to the existing SVC
 - Thyristor valves, C&P system, cooling system and SCADA
 - If needed other companies deliver the passive components, such as filter capacitor banks or Thyristor Controlled Reactors

Containerized active part example design

1. Full active part replacement

- Fully updated functionality
- Improvement of SVC performance (response time, flicker reduction, etc.)
- Built from state-of-the-art components with high availability of spare parts
- Remote monitoring and analysis

2. Partial active part replacement

- New power electronics with high reliability, availability of spares and lower losses
- Complete set of valve protections including forward recovery protection (FRP)
- Temperature measurement of each thyristor valve that improves monitoring

3. C&P & HMI replacement

- Improvement of SVC performance (response time, flicker reduction, etc.)
- Built from state-of-the-art components with high availability of spare parts
- Remote monitoring and analysis

4. SVC replacement by STATCOM

- Cost efficient transfer to STATCOM level dynamic performance
- Superior flicker reduction performance
- Smaller footprint
- It may be possible to use existing SVC harmonic filter banks to extend the control range of the STATCOM system
- Availability of spare parts
- Remote monitoring and analysis

Delivery times

- Inspection and system study 2-4 days
- Modernization project6-9 months
- SVC downtime 6-14 days

Hubbell's Power's scope

- New systems
 - System study and report
 - Project management
 - Equipment delivery
 - Installation supervision
 - Commissioning
- Modernisation
 - Site survey
 - Measurements and report
 - Project management
 - Equipment delivery
 - Installation supervision
 - Commissioning

Key takeaways

- EAF are demanding loads for the grid → only SVC or STATCOM can guarantee sufficient performance
- SVC or STATCOM sizing
 - With simulations if new installation
 - With measurements if existing installation
- SVC generally for higher powers
- STATCOM for lower powers and cases where flicker attenuation greater than >2 needed
- SVC modernisation for cases where existing SVC has problems and/or poor spare part availability

www.hubbell-icd.com