Practical sensor options.

In-product installed.

Closed or open loop options.

ASHRAE compliant.

Significant energy savings.
GOOD NEWS Daylight Harvesting is easily adapted to existing architecture and need not require an expensive overhaul. Most buildings already include windows where natural light is present during normal business hours. Simply install new lighting with sensors pre-placed within the luminaires and start taking advantage of nature’s lighting bounty today.

CODE COMPLIANCE
Does your state require Daylight Harvesting today? Will it tomorrow? States will be required to update their energy codes to meet or exceed the ASHRAE 90.1-2010 by October 2013. ASHRAE 90.1 requires control when daylight from top-lighting (skylights) or side-lighting (windows) is present. This new standard applies to daylight areas exceeding 900 ft² for top-lighting areas or 250 ft² for side-lighting areas. Control must be multi-level with continuous dimming or at least two output levels from 0–35% and 50–75%.

In addition, ASHRAE 90.1-2010 lowers the allowable power density for commercial, educational, and institutional spaces, meaning that the type of lighting installed must be energy efficient and inherently sustainable. Alera Lighting products fit this requirement with typical efficiencies above 90%.

Alera meets the continuous dimming requirements with both the Philips and Lutron installed sensor solution options.

ASHRAE 90.1-2010
- States must meet, but many may choose to exceed requirements
- Daylighting and occupancy control requirements increase dramatically
- Not limited to new construction—alterations of a space by 10% or more require code compliance

Code Compliance

Does your state require Daylight Harvesting today? Will it tomorrow?

States will be required to update their energy codes to meet or exceed the ASHRAE 90.1-2010 by October 2013. ASHRAE 90.1 requires control when daylight from top-lighting (skylights) or side-lighting (windows) is present. This new standard applies to daylight areas exceeding 900 ft² for top-lighting areas or 250 ft² for side-lighting areas. Control must be multi-level with continuous dimming or at least two output levels from 0–35% and 50–75%.

In addition, ASHRAE 90.1-2010 lowers the allowable power density for commercial, educational, and institutional spaces, meaning that the type of lighting installed must be energy efficient and inherently sustainable. Alera Lighting products fit this requirement with typical efficiencies above 90%.

Alera meets the continuous dimming requirements with both the Philips and Lutron installed sensor solution options.

ASHRAE 90.1-2010
- States must meet, but many may choose to exceed requirements
- Daylighting and occupancy control requirements increase dramatically
- Not limited to new construction—alterations of a space by 10% or more require code compliance

5 STEPS TO DAYLIGHTING SUCCESS
ARCHITECTURAL SENSORS FROM Alera LIGHTING
IN-PRODUCT INSTALLED DAYLIGHT SENSORS

It makes sense to use Alera’s Practical Sensor options to simplify installation, add value to the project, and improve sustainable design for commercial indoor lighting projects.

STEP 1 SELECT YOUR PRODUCT AVAILABLE WITH ARCHITECTURAL SENSORS

CURV, CURV PLUS LISO
Indirect
95-100% Up, 0-5% Down
4', 8', 12'
1-3 Lamp Cross Sections
96%

CURV RADIAL LENS
Direct/Indirect
70% Up, 30% Down
4', 8'
1-3 Lamp Cross Sections
91%

CURV RADIAL BAFFLE
Direct/Indirect
65% Up, 35% Down
4', 8'
1-3 Lamp Cross Sections
92%

CURV RADIAL PERF BAFFLE
Direct/Indirect
65% Up, 35% Down
4', 8'
1-3 Lamp Cross Sections
92%

CURV LOUNDER
Direct/Indirect
65% Up, 35% Down
4', 8'
1-3 Lamp Cross Sections
87%

CURV, CURV PLUS LISO
Indirect
95-100% Up, 0-5% Down
4', 8', 12'
1-3 Lamp Cross Sections
96%

PLANK, PLANK PLUS LISO
Direct/Indirect
75% Up, 20% Down
4', 8', 12'
1-3 Lamp Cross Sections
97%

NEVIS, NEVIS PLUS LISO
Direct/Indirect
70% Up, 30% Down
4', 8'
1-3 Lamp Cross Sections
93%

CURVISTA SOLID
Direct/Indirect
70% Up, 30% Down
4', 8'
2-4 Lamp Cross Sections
93%

CURVISTA PERF
Direct/Indirect
70% Up, 30% Down
4', 8'
2-4 Lamp Cross Sections
93%

PALETA
Direct/Indirect
70% Up, 30% Down
4', 8'
2-4 Lamp Cross Sections
93%

CLOSED LOOP

PHILIPS LUXSENSE (-DSPL)
Sensor signal affected by light sources controlled

SYSTEM TYPE

ADVANTAGES

- Small, unobtrusive daylight sensor does not impact luminaire aesthetic
- Closed loop daylight harvesting method
 - Looks down at a cone of light below the product to measure electrical input needed
 - Does not require a direct view of window to operate
 - Stand-alone system does not require additional components to operate correctly
- Daylight Sensor and Mark 7 0-10V dimming ballast arrive pre-installed in Alera Lighting product

COMPATIBLE BALLASTS

- EDMK7—Mark 7 0-10V Dimming

OPEN LOOP

LUTRON ECOSYSTEM (-DSL)
Sensor signal not affected by light sources controlled

SYSTEM TYPE

ADVANTAGES

- Modestly sized sensor with white finish
- Open loop daylight harvesting method
 - Aims directly at window for a true daylight reading
 - Requires a direct view of the window to operate
 - Part of a Lutron EcoSystem® installation which integrates seamlessly into Lutron’s proprietary larger system
- Daylight Sensor and Lutron EcoSystem® digital dimming ballast arrive pre-installed in Alera Lighting product

COMPATIBLE BALLASTS

- EDLUTES—Lutron EcoSystem (ECS Series)
EXAMPLE OF A PRIVATE OFFICE WITH SUSPENDED LUMINAIRE WITH SENSOR

Suspended Alera Lighting Luminaire

12'-18' Suspension

8' Mounting Height from Floor to Sensor

2.5' from Floor to Desktop

STEP 5 EASY INSTALL

Sensors arrive pre-installed

DSPL OPTION PHILIPS LUXSENSE

System is pre-commissioned by Philips and assumes 45fc out-of-the-box. For on-site adjustments, if desired, simply twist sensor to set at new level. For details, see page 9 of this brochure.

DSL OPTION LUTRON ECOSYSTEM® SENSOR

Product becomes an element of the EcoSystem family and the installed sensor is commissioned using Lutron’s proprietary interfaces. Ballast and sensor are pre-installed by Alera to facilitate on-site simplicity of sensor installation and connection to ballast(s). For details, see pages 6 and 7 of this brochure.

QUICK-CONNECT IN-ROW CONTROL AND FIXTURE WIRING

Short rows typically require a single feed where control wiring is carried through the luminaires via quick-connect wiring to dramatically reduce complexity and on-site wiring errors. Power feed wires are also handled via the installer-friendly Quick-Connect method.

EXAMPLE OF A PRIVATE OFFICE WITH SUSPENDED LUMINAIRE WITH SENSOR

Suspended Alera Lighting Luminaire

12'-18' Suspension

8' Mounting Height from Floor to Sensor

2.5' from Floor to Desktop

STEP 4 DESIGN ROOM

Examples below show installed sensor locations. Products will be wired to your specifications.

- Single 4', 8', or 12' * Fixture with Sensor.
- Row of two or more 4', 8', or 12' * Fixtures with Sensors where Sensor is placed at row end.
- Row of two or more 4', 8', or 12' * Fixtures with Sensors where Sensor is placed within row.

*Available lengths vary by product family.
WHY INSTALL A DAYLIGHT SENSOR?

ENERGY REDUCTION
Incorporating Daylight Harvesting can save significant energy in both private offices and large, open areas where natural sunlight is present during operating hours. Energy savings from facility operations go directly to operating profit, making this an attractive element of any energy reduction strategy.

SUSTAINABLE BEST PRACTICE
A true win-win solution. Many leading organizations place importance on sustainable best practices that can be easily demonstrated to customers, employees, and shareholders. Daylight harvesting is a simple way to implement best practice lighting that can be used to enhance company image while saving incremental energy for a true win-win solution.

TECHNICAL DATA

INSTALLED SENSOR OPTION
DSPL—DAYLIGHT SENSOR, PHILIPS LUXSENSE
Requires Mark 7 Dimming Ballast, 0-10v • Up to 32% Potential Energy Savings

Shown installed in Curv Radial Lens at left. For specific in-product placement in other Alera Lighting products, see individual product specification and/or technical data sheets. For special placement requests, contact Alera Lighting.

SENSOR MANUFACTURER DATA
LuxSense Commissioning
• Measure the light level under each LuxSense sensor with no or negligible daylight contribution
 — Light meter required
• If needed, turn the sensor until the required light level is reached (with no or negligible daylight contribution)
• Duplicate this in other rooms when similar daylight and reflectance conditions exist
• Note that Philips LuxSense is not designed for maintaining a constant light level
• Warning: The reduced light level should be no more than 30% lower than the average installed light level, without daylight contributions (example: 55fc installed, adjustment down to 39fc is possible)

Optical Characteristics
• It is assumed that the reflection in a room is such that a light level of 45fc on a table (2.6' high) will result in 2.3fc seen by the controller at 8’ under a viewing angle of 45°; the opening angle can be adapted by the sensor ring control, realizing an adjustment factor between \(\frac{1}{3} \) and 3.

Controls Characteristics
• LuxSense compensates approximately for 50% of the added light (simulated and measured with a fluorescent light source). See graph at left below. In case of a natural light source, the compensation is higher than 50%.

To adjust light level setting, twist sensor as indicated by arrow and seen below.

All technical data is per published data from Philips unless noted. Subject to change without notice. For additional technical data and/or the most current information available, visit Philips.com.
Determine the proper location of the Daylight Sensor using the adjacent diagrams.

- The arrow on the daylight sensor points toward the area viewed by the sensor.
- Place the daylight sensor so its viewing area is centered on the nearest window at a distance from the window of between one to two times the effective window height, H.
- The effective window height, H, starts at the window sill or 3 feet (91 cm) up from the floor, whichever is higher, and ends at the top of the window.
- Ensure that the view of the daylight sensor is not obstructed.
- Do not position the daylight sensor in the well of a skylight or above indirect lighting fixtures.
- For narrow areas where the daylight sensor cannot be placed 1-2 H from windows, place sensor near window facing into the space.

Testing the Daylight Sensor

- Ensure power to the lighting circuit in ON.
- Ensure the lighting control system is commissioned properly.
- WARNING: Electrical shock hazard. Can cause serious injury or death. The lighting circuit should be energized only when all wiring is complete and all persons are clear of fixtures/devices. Turn power ON only after checking that it is safe to do so.
- Shine a flashlight directly onto the daylight sensor.
- Keep the light ON for at least 30-40 seconds. This should cause the lights connected or programmed to the sensor to dim. If the lights do not dim, they may already be at a dimmed level due to daylight. If so, you may test the sensor by covering it for 30-40 seconds. This should cause the lights to get brighter.

SENSOR MANUFACTURER DATA CONTINUED

Determining the Daylight Sensor Mounting Location

- The arrow on the daylight sensor points toward the area viewed by the sensor.
- Place the daylight sensor so its viewing area is centered on the nearest window at a distance from the window of between one to two times the effective window height, H.
- The effective window height, H, starts at the window sill or 3 feet (91 cm) up from the floor, whichever is higher, and ends at the top of the window.
- Ensure that the view of the daylight sensor is not obstructed.
- Do not position the daylight sensor in the well of a skylight or above indirect lighting fixtures.
- For narrow areas where the daylight sensor cannot be placed 1-2 H from windows, place sensor near window facing into the space.

TYPICAL INSTALLATION

NARROW AREA INSTALLATION

Sensor

Optical Characteristics
Directional light sensing requires lens be aimed at window(s). (see adjacent page)

Controls Characteristics
• Sensor is equipped with IR receiver
• EcoSystem® Programmer can be used to commission
 — See Lutron.com for additional data

Alera Lighting Note
To adjust sensor direction, twist sensor as indicated by arrow seen at left.

Alera Lighting Note
To adjust sensor direction, twist sensor as indicated by arrow seen at left.

Lutron Additional Componentry
Please note that the Lutron system can include wall switches and occupancy sensors which may need to be wired into the EcoSystem® ballast. While these additional ancillary components are not available installed on the fixture itself, the in-fixture wiring requirements can typically be accommodated.

Alera Lighting will, therefore, ask for project details to determine if additional wiring is required within the Alera product.