Type K and Type HHC — 38 to 695 Amperes

Engineered for endurance, the Euclid[™] Type K and Type HHC resistors feature a continuous stainless steel resistive element supported in rugged mill-type frames. Every detail of their construction has been designed to assure reliable performance, even in the toughest applications, from both a mechanical and electrical pointofview.

Application

Euclid[™] resistors can be used for any power resistor application calling for a convection cooled resistor. They can be easily stacked, parallel or series connected to meet the specific requirements of the application. Types K and HHC resistors are ruggedly constructed and specifically designed for heavy duty industrial environments where vibration and other severe treatment is encountered. Mills, foundries, shipyards and mines are typical areas where the Euclid[™] resistors have been successfully used on cranes, hoists, locomotives, lift trucks, conveyors, slurry pumps and other electrically powered equipment.

Type K Features

The Type K1 resistors have a single coil resistance element and are available in ratings ranging from 38 to **200** amperes.

- Continuous stainless steel element.
- No welded element joints, no hot spots.
- Mill-type construction.
- Nonbreakable, all steel and mica components.
- Element floats on insulated steel spacers; expands and contracts freely.
- No distortion with temperature rise.
- 200 ampere capacity without paralleling.
- High thermal capacity absorbs high current surges.
- Ample taps for resistance selection. Heavy, stainless steel terminals.
- Average 7652 watts per single unit.
- Designed to NEMA resistor standards.
- Double insulation to ground.

Type HHC Features

The Type HHC resistors use a folded ribbon resistance element and are available in ratings ranging from **200** to 695 amps. High current ratings (up to 695 amps) virtually eliminate the need to parallel resistor units on large h.p. applications, yielding a substantial cost and space savings.

- Continuous, stainless steel resistive element.
- No welds to cause mechanical or electrical failures.
- Rugged, steel end plates designed for universal mill mounting.
- Designed to NEMA resistor standards.
- Strip floats on steel supports permitting free expansion/contraction.
- Inorganic, nontracking insulating materials insuring insulation integrity even in conductive dust and moisture laden atmospheres.
- 1000 volt insulation to ground.
 (Z length only)
- Designed for effective convection of forced air cooling.
- Average 8500 watts per single unit.
- Heavy, stainless steel terminals.
- Double insulation to ground.

Type HHC 125 to 695 amps Single Resistor Unit

Specifications

Type K (3004) Description

The resistive elements of the Type K units are formed from a continuous strip of 406 stainless steel wound in an edgewise manner. The element has a high degree of resistance to oxidation even at elevated temperatures. The temperature coefficient of the coil is so slight that it is considered negligible for most applications. The weld-free helix provides a uniform cross section of material throughout the coil eliminating hot spots. The element coil is supported by full length, noncorrosive rod bolt assemblies. Insulated steel spacers support the continuous element allowing free expansion, eliminating stress, distortion and direct contact with mica insulation.

Specially engineered stainless steel terminals provide positive electrical connections to the element. Each terminal is shaped so that, when the ends are spot welded, the terminal is forced to mechanically hug the element making a firm, stable contact. In addition, the terminal is arc welded to the element further insuring positive electrical connection.

Standard resistors are equipped with seven terminals. A stainless steel Bridging Member is bolted to each terminal and rod bolt assembly for added durability and to resist wrenching and heavy electrical leads.

The resistive element and rod bolt assemblies are supported by two heavy steel channel end plates. These noncorrosive plates are available for universal mounting and can be readily stacked or rack mounted in $25\frac{1}{2}$ " (Y length) and $26\frac{1}{2}$ " (Z length) units.

Type HHC (3005) Description

The unique resistive element of the Type HHC supplies a uniform thickness throughout its continuous length. The width and thickness of the continuous strip and the spacing between folds have been computer selected for each unit, optimizing their ratings.

The $3\frac{1}{2}$ " to $4\frac{3}{4}$ " wide, continuous type, 406 stainless steel resistive element is supported at each fold by two steel pins embedded in a high strength, inorganic insulator. The steel ribbon is electrically isolated from the supporting rod bolt. The supporting rod, in turn, is insulated from the end plates by a high temperature insulator. All insulators are interlocked with each other and with the end plates to provide rigidity to the unit. The insulators are high quality, inorganic, nontracking moldings. Their nonwetting surface and tapered construction of the end plate insulators insure insulation integrity even in conductive dust and moisture laden atmospheres.

The supporting mechanism (end plates, rod bolts, supporting insulators and pins) provides "floating support" of the element for free expansion and contraction. Airflow for effective convective cooling or forced ventilation is unrestricted by the support elements. Standard resistors are equipped with nine terminals for the **200**–225 amp banks and seven terminals for the 255– 695 amp banks.

Rugged noncorrosive end plates of 1 l gauge, channel formed steel secure the rod bolts. Each end frame provides six elongated bolt holes for mounting and stacking versatility. The Type HHC Resistor is available in $25\frac{1}{2}$ " (Y length) and $26\frac{1}{2}$ " (Z length) units.

The Type K construction throughout is aimed at providing positive electrical

The stainless steel resistive element is supported at each fold by two steel pins embedded in a high strength, inorganic insulator.

Euclid[™] 3004 Type K Coils

		Z Length - 2	6.5" Long	Y Length - 25.5" Long			
		Universal Mill Fra Universal E	me Resistor w/ nd Plates	Short Mill Fra Universal	me Resistor w/ End Plates	Short Frame Resistors w/ Euclid End Plates	
Continuous Amps	Ohms/ Frame	Old Catalog Number	alog Part Old Catalog Part er Number Number Number		Part Number	Old Catalog Number	Part Number
		\$3,494		\$3,494		\$3,494	
38 41 48 53	5.030 3.900 3.230 2.500	Z38W5030GB Z41W3900GB Z48W3230GB Z53W2500GB	HC30856-001 HC30856-002 HC30856-003 HC30856-004	- - -	HC30855-401 HC30855-402 HC30855-403 HC30855-404	Y38W5030GB Y41W3900GB Y48W3230GB Y53W2500GB	HC30855-001 HC30855-002 HC30855-003 HC30855-004
62 66 72 77	1.990 1.620 1.480 1.210	Z62W1990GB Z66W1620GB Z72W1480GB Z77W1210GB	HC30856-006 HC30856-007 HC30856-009 HC30856-010	- - -	HC30855-406 HC30855-407 HC30855-409 HC30855-410	Y62W1990GB Y66W1620GB Y72W1480GB Y77W1210GB	HC30855-006 HC30855-007 HC30855-009 HC30855-010
80 86 95 98	1.020 0.970 0.808 0.680	Z80W1020GB Z86W970GB Z95W808GB Z98W680GB	HC30856-011 HC30856-012 HC30856-015 HC30856-016		HC30855-411 HC30855-412 HC30855-415 HC30855-416	Y80W1020GB Y86W970GB Y95W808GB Y98W680GB	HC30855-011 HC30855-012 HC30855-015 HC30855-016
101 109 117 120	0.595 0.542 0.463 0.405	Z101W595GB Z109W542GB Z117W463GB Z120W405GB	HC30856-017 HC30856-018 HC30856-021 HC30856-022	- - -	HC30855-417 HC30855-418 HC30855-421 HC30855-422	Y101W595GB Y109W542GB NA Y120W405GB	HC30855-017 HC30855-018 NA HC30855-022
124 139 143 147	0.357 0.322 0.282 0.248	Z124W357GB Z139W322GB Z143W282GB Z147W248GB	HC30856-023 HC30856-026 HC30856-027 HC30856-028		HC30855-423 HC30855-426 HC30855-427 HC30855-428	NA NA NA NA	NA NA NA NA
156 171 174 178	0.235 0.206 0.181 0.162	Z156W235GB Z171W206GB Z174W181GB Z178W162GB	HC30856-030 HC30856-033 HC30856-034 HC30856-035		HC30855-430 HC30855-433 HC30855-434 HC30855-435	Y156W235GB Y171W206GB Y174W181GB Y178W162GB	HC30855-030 HC30855-033 HC30855-034 HC30855-035
190 195 200	0.141 0.126 0.114	Z190W141GB Z195W126GB Z200W114GB	HC30856-037 HC30856-038 HC30856-039		HC30855-437 HC30855-438 HC30855-439	Y190W141GB Y195W126GB Y200W114GB	HC30855-037 HC30855-038 HC30855-039

Type K Adjustable Terminal Clamp use P/N 29103-000 List Price \$174 each; Discount Code EL.

Unmounted Terminal Assembly consists of necessary Mounting Hardware (P/N 65130-005 List Price **\$24** each; Discount Code EL) to mount customer supplied terminal lugs for one resistor terminal.

Prices Subject to Change without Notice.

DISCOUNT CODE EL

Price List 3004/3005 • January 2021, Replaces July 2015

DISCOUNT CODE EM

Euclid[™] 3005 Type HHC Coils

		Z Length - 26.5" Long Y Length - 25.5" Long						
		Universal Mill Fra Universal E	me Resistor w/ nd Plates	Short Mill Fra Universal	me Resistor w/ End Plates	Short Frame Resistors w/ Euclid End Plates		
Continuous Amps	Ohms/ Frame	Old Catalog Part Number Number		Old Catalog Number	Part Number	Old Catalog Number	Part Number	
		\$3,494		\$3,49	94	\$3,494		
200 225	.150 .121	-	HC53357-023 HC53357-024	-	HC53356-023 HC53356-024	-	-	
255 295 350 395	.112 .096 .072 .057	HHC255Z HHC295Z HHC350Z HHC395Z	HC53357-001 HC53357-002 HC53357-003 HC53357-004	HHC255Y HHC295Y HHC350Y HHC395Y	HC53356-001 HC53356-002 HC53356-003 HC53356-004	NA NA NA NA	NA NA NA NA	
445 500 695	.046 .032 .017	HHC445Z HHC500Z HHC695Z	HC53357-005 HC53357-006 HC53357-008	HHC445Y HHC500Y HHC695Y	HC53356-005 HC53356-006 HC53356-008	NA NA NA	NA NA NA	

Unmounted Terminal Assembly consists of necessary Mounting Hardware (*P*/N 65130-007 List Price **\$38** each; Discount Code *EM*) to mount customer supplied terminal lugs for one resistor terminal. In accordance with NEMA standards, ratings are based on a single unit operating in free air at a temperature rise not to exceed 375°C.

Note: HHC coils 125 amp through 225 amp are recommended for continuous duty. For intermittent duty, use 3004 Type K coils.

Bolted Galvanized Racks & Enclosures for Z Length SSRM, K1 & HHC Type Resistors

DISCOUNT CODE EL Price Additions Max Mount & No. of Mount Resistor Indoor Screened **Outdoor Vented** Standard Interwire **Open Rack** Frames in Resistor Enclosure Enclosure Mill Rack or Frames in Resistor Enclosure w/o Rack or Interwiring Frames Enclosure (26.5" Long) Part No. List Price Part No. List Price Part No. List Price List Price List Price HC82668-003 \$1,560 HC82668-013 \$6,302 \$6,552 \$250 \$624 HC82668-023 2 \$1,560 \$6,302 \$7,426 \$358 \$968 3 HC82668-003 HC82668-013 HC82668-024 \$468 4 HC82668-004 \$2,028 HC82668-014 \$7,644 HC82668-025 \$8,424 \$1,310 \$1,654 5 HC82668-005 \$2,464 HC82668-015 \$9,204 HC82668-026 \$10,108 \$578 \$2,808 \$10,670 \$1,996 \$11,732 \$686 6 HC82668-006 HC82668-016 HC82668-027 \$3,244 \$12,168 \$976 \$2,340 7 HC82668-007 HC82668-017 HC82668-028 \$13,354 \$3,588 HC82668-018 \$13,478 \$14,820 \$904 \$2,684 8 HC82668-029 HC82668-008 9 HC82668-009 \$4,056 HC82668-019 \$15,038 HC82668-030 \$16,536 \$1,014 \$3,026 \$16,380 \$4,492 \$1,124 10 HC82668-010 HC82668-020 \$3,370

Note: Does not include the price of the resistor units.

Prices Subject to Change without Notice.

Racks & Enclosures

Dimensions for K1 & HHC Resistors Rack & Frames

'A" Height

K1 & HHC Resistor Rack Heights - "A"							
No. of Resistors	Open	Indoor	Outdoor				
2	21.50	22.10	30.93				
3	29.50	30.10	38.93				
4	37.50	38.10	46.93				
5	45.50	46.10	54.93				
6	53.50	54.10	62.93				
7	61.50	62.10	70.93				
8	69.50	70.10	78.93				
9	77.50	78.10	86.93				
10	85.50	86.10					

All dimensions are in inches.

The Indoor Enclosures have a solid top and the height includes the bolt height shown on the outline drawing, making them 0.6 inches higher than the Open Racks.

The Outdoor (VWP) Enclosures include ventilation space (use 3 high rack for two resistors, etc.) plus the spacer, cover thickness and bolt heights making them 1.43 inches higher than the Open Rack.

Euclid[™] Power Resistors

Resistor Design Information

Hubbell resistors are used on any AC or DC power or control circuit. The resistors are corrosion resistant and built to work in severe environments. Hubbell Resistors can be used on high vibration applications such as traveling cranes or other movable equipment.

Hubbell resistors are manufactured with a resistance tolerance of $\pm 10\%$. For most applications the coefficient of resistivity has a negligible effect and can be ignored.

Resistors are rated in accordance with NEMA and IEEE standards. Wattage ratings are based upon the assumption that the resistor is operating in free air at altitudes of <6000 feet and at a temperature rise not to exceed $375^{\circ}C$ ($675^{\circ}F$) in a $40^{\circ}C$ ($104^{\circ}F$) ambient.

It takes a few steps to properly select the correct Hubbell resistor for a given application:

- 1. Determine resistance in ohms.
- 2. Determine the power in watts to be dissipated by the resistor.
- Determine the proper size resistor SSR (length 3, 4, 5, 6, 7), K or HHC — based on volts, current, ohms, watts, altitude, grouping, circuit conditions.
- 4. Select the most suitable unit and the desired mounting.

Determine Resistance in Ohms

a. The resistance can be determined by Ohm's Law

$$\mathbf{R} \text{ in ohms} = \frac{\mathbf{E} \text{ in volts}}{\mathbf{I} \text{ in amperes}}$$

b. This formula can be used to determine the required current if the voltage and resistance are known.

$$I = \frac{E}{R}$$

c. In addition, E = IR

Determine Power in Watts to be Dissipated

Power can be determined from several formulas all of which derive from Ohm's Law.

a. When resistance and current are known,

$$\mathbf{P}$$
 in watts = $\mathbf{I}^2 \mathbf{R}$

b. When resistance and voltage are known,

$$\mathbf{P} \text{ in watts} = \frac{\mathbf{E}^2 \text{ in volts}}{\mathbf{R} \text{ in ohms}}$$

c. When current and voltage across the resistor are known,

\mathbf{P} in watts = \mathbf{IE}

In all cases, current is in amperes and voltage is in volts.

Determine proper size resistor based on volts, current, ohms, watts, altitude, grouping, circuit conditions.

The previous discussion has assumed that a single resistor was to be used within its voltage ratings, with power applied continuously and that it was located in free air at 40°C at sea level. The following takes into account variations of these factors. For further help contact the factory directly.

- a. Hubbell resistors are designed for a maximum of 600 volts (except Z length HHC coils are rated 1000 volts) between terminals. For higher voltages connect two or more resistor units in series so voltage drop across any one resistor unit is 600 volts or less.
- Altitude For applications at altitudes up to 6000 feet, the listed ratings are applicable. Between 6000–15000 feet derate to 75% of the standard watt ratings, or derate to 86% of the current rating.
- c. Ambient Temperature For ambient temperatures above 40°C, derate resistors in accordance with chart below.

Class Numbers of Resistors for Nonreversing Service and Reversing Nonplugging Service Without Armature Shunt or Dynamic Braking

Approximate Percent of Full-Load Current	Duty Cycles								
Point Starting From Rest	5 Seconds On 75 Seconds Off	10 Seconds On 70 Seconds Off	15 Seconds On 75 Seconds Off	15 Seconds On 45 Seconds Off	15 Seconds On 30 Seconds Off	15 Seconds On 15 Seconds Off	Continuous Duty		
25	111	131	141	151	161	171	91		
50	112	132	142	152	162	172	92		
70	113	133	143	153	163	173	93		
100	114	134	144	154	164	174	94		
150	115	135	145	155	165	175	95		
200+	116	136	146	156	166	176	96		

When an armature shunt resistor is added, the class number shall include the suffix "AS". For example, Class 155-AS is a resistor which includes an armature shunt and which will allow an initial inrush of 150% with the armature shunt open. When a dynamic braking resistor is added, the class number shall include the "DB". For example, Class 155-DB.

Class Numbers of Resistors for Continuous Duty Speed Regulating Services with Direct Current Shunt Motors and AC Wound Rotor Motors

	eduction	eed Iction	Pe i 40	r cent of I 50	Rated Mo 60	otor Torqu 70	ue at Red 80	uced Spe 90	ed 100
5 405 505 605 705 805 905 100.	5	5	405	505	605	705	805	905	1005
10 410 510 610 710 810 910 1010	10	0	410	510	610	710	810	910	1010
15 415 515 615 715 815 915 101.	15	5	415	515	615	715	815	915	1015
20 420 520 620 720 820 920 1024	20	.0	420	520	620	720	820	920	1020
25 425 525 625 725 825 925 102	25	:5	425	525	625	725	825	925	1025
30 430 530 630 730 830 930 1030	30	0	430	530	630	730	830	930	1030
35 435 535 635 735 835 935 103.	35	5	435	535	635	735	835	935	1035
40 440 540 640 740 840 940 104	40	0	440	540	640	740	840	940	1040
45 445 545 645 745 845 945 104.	45	5	445	545	645	745	845	945	1045
50 450 550 650 750 850 950 105	50	0	450	550	650	750	850	950	1050

The stability of the motor speed obtained by simple rheostatic control is dependent upon the stability of the load on the motor. The degree of instability is directly proportional to the amount of speed reduction. Variations in load have a greater proportional effect on the speed when the load is light. For these reasons, the table has not been carried beyond a speed reduction of 50% and a load torque of 40%.

_ .

With a direct current shunt motor, the percent of rated motor current which obtained at the reduced speed is assumed to be the same as the percent of rated torque. With a direct current series motor operating at less than 100% current, the percent of torque is less than the percent of current. With a wound rotor motor and resistor in the motor circuit, the percent of rated rotor (secondary) current which is obtained at the reduced speed is assumed to be the same as the percent of rated torque.

A speed regulating resistor is so designed that it may be operated continuously at any point in the speed regulating range when the load follows its normal speed-torque curve. When additional resistance is required to obtain the starting current specified, the additional portion of the resistor shall be designed for a duty cycle selected from the table above. The resulting resistor may be completely specified by a compound number. For example, 154/850 designates a resistor which is designed for starting and speed regulating duty. The starting section is designed to allow 100% of full-load current on the first point, starting from rest, and a duty cycle of 15 seconds on and 45 seconds off. The regulating section is designed to give 50% speed reduction at 80% of rated torque and for continuous duty when the load follows its normal speed-torque curve.

When used for reversing plugging service add the suffix "P". For example, 162-P. The class numbers apply to the complete resistor, but the duty cycles apply to the accelerating resistor only. Reversing plugging service is not recommended with Class 11x, 13x or 14x.

When used for DC dynamic lowering service add the suffix "DL". For example, 162-DL. Dynamic lowering service is not recommended with Class 11x, 13x or 14x.

Hubbell Industrial Controls, Inc. a subsidiary of Hubbell Incorporated 4301 Cheyenne Drive, Archdale, NC 27263 Phone (336) 434-2800 | Fax (336) 434-2801 www.hubbell.com/hubbellindustrialcontrols/en sales@hubbell-icd.com