Tape armour must be re-trimmed at 90° to the vertical axis of the cable after it has been spread, to ensure that the full face is correctly presented.

Operating temperature range -60°C +80°C

A
Strip cable to suit equipment as shown above and expose the armour/braid 'I' removing all cable fillers. 'I' = 20mm for cable gland sizes Os to A 'I' = 25mm for cable gland sizes B to C2 'I' = 32mm for cable gland sizes D to F 'II' to suit equipment. If required, fit shroud. See Notes re. Drain Wires.

B
Push the cable through the armour spigot ⑤. Spread armour/braid over the armour spigot ⑤ until the end of the armour/braid is up against the shoulder of the armour cone. Position the armour clamping ring ⑥.

C
Remove the rubber pot ④ from the entry ⑤. Place the entry ⑤ over the armour spigot ⑤. Move the sub-assembly ④ and ⑤ up to meet the entry ⑤.

Gland Preparation

1. Backnut
2. Middle Nut
3. Reversible Armour Clamping Ring (RAC)
4. Armour Spigot
5. Rubber Pot
6. Entry (with captive deluge seal)

Note: Reversible Armour Clamping Ring (RAC)

General identification ring orientation for:

- Braid 'X'
- Flat Steel Wire 'Y'
- Steel Tape 'Z'

IMPORTANT: The arrowhead indicating the correct armour thickness or type should point towards the equipment.

Note: Armour cable acceptance sizes are marked on the clamping ring.

www.ehawke.com

For any enquiries within EAC countries, please contact:

MACDEM
P.O. Box 16, Moscow 119027, Russia
Tel / Fax: +7 595 778 1264
Email: office@macdem.ru
Website: www.macdem.ru

Images are for illustration purposes only.
Product supplied may differ slightly from that shown.

AI 466 / Issue A
When handling this material, the gloves supplied must be worn. The epoxy compound is supplied in the form of a two part package. These should be mixed into the ratio of 1:1 until both colours have blended into one, without any streaks. Rolling and folding is the most satisfactory method of obtaining an even blend. Once mixed, the compound must be used within 30 minutes. After this time it will begin to stiffen. The compound should be kept at an ambient temperature of no less than 20°C prior to using. At lower temperatures it becomes difficult to mix. Should any compound come into contact with the skin it should be cleaned off with skin cleaner and not allowed to dry on the skin. Only compound for immediate terminations should be mixed.

The mixing and installation of the compound at an ambient temperature below 4°C is not recommended due to extended curing periods.

The storage of the compound shall be at temperatures between 5°C and 30°C.

EPOXY COMPOUND PREPARATION

D Hold the entry in position with a spanner/wrench to prevent rotation. Hand tighten the middle nut onto the entry and turn a further half to three quarters of a turn with a spanner/wrench.

E Unscrew the middle nut and visually inspect that the armour/braid has been successfully clamped between the armour spigot and the armour clamping ring. If armour/braid not clamped repeat assembly.

F Remove the entry, spread the cable cores out for the compound packing. Pack the compound between the cores shown. See notes below and Fig. 7 for compound preparation.

G With all gaps and voids filled, bring the conductors back together and pack more compound around the outside of the conductors. Tape the conductors together to prevent disturbance of the compound seal. Pass the rubber pot over the armour spigot and remove any surplus compound. from the top of rubber pot and the joint face as indicated.

H Replace the entry over the rubber pot ensuring that compound does not cover the end of.

I Locate and hand tighten the sub-assembly and to the entry.

IMPORTANT: The conductors must not be moved for a minimum of four hours.
1.0 INSULATING DRAIN WIRES WITH HEAT SHRINK OR COLD SHRINK TUBING

1.1 Fold back the armour / braid and bend it to right angles from the inner sheath.

1.2 Remove foils and tape level with the outer sheath, exposing the drain wires and insulated conductors. Cut back a further 10mm of inner sheath.

1.3 Pass 100mm length of heat shrink or cold shrink tubing over the drain wire until it comes into contact with the foils, then shrink the tubing evenly down onto the drain wire so that no air pockets occur.

1.4 To insulate the joint between the foils and the tubing a suitable piece of 10mm long shrink tubing or neoprene stretch tubing or a 10mm wide lap of PVC tape may be used.

1.5 After completing 1.1 to 1.4 on each drain wire, lay the armour / braid parallel to the cable, if applicable, then carry out instruction B.

2.0 INSULATING DRAIN WIRES / SCREENS WITH SEPARATE INSULATED CRIMPED CONDUCTORS OR SOLDERED CONNECTION

2.1 Fold back the armour / braid and bend to right angles from the inner sheath.

2.2 Remove a further 15mm of inner sheath (See Fig. 1).

2.3 Unravel one or two groups of wires from the screen wires, then remove the remainder of the screen wires (See Fig. 2).

2.4 Twist the group of screen wires into a pigtail and cut to 15mm long.

2.5 Crimp an insulated conductor to the pigtail with a suitable insulated butt ferrule (or soldered connection), leaving enough length of the insulated conductor to enable the remote end to be connected to the earth terminal in the equipment. (See Fig. 3). Note: There shall be a minimum of 10mm of compound on both ends of the crimped /soldered joint.

2.6 To insulate the joint between the screen wires and the insulated conductor, place one lap of PVC insulating tape over the exposed metallic joint.

2.7 After completing 2.1 to 2.6 on each drain wire, lay the armour / braid parallel to the cable. Then carry out instruction B.

3.0 INSULATING DRAIN WIRES WITH INSULATING VARNISH OR PAINT

3.1 Fold back the armour / braid and bend it at right angles from the inner sheath.

3.2 Remove the foil and tape level with the inner sheath exposing the drain wires and conductor pairs.

3.3 Cut back a further 10mm of inner sheath (See Fig. 4).

3.4 Spray or paint the drain wires with insulating varnish or paint, then leave to dry (See Fig. 5).

3.5 To insulate the foil ends a suitable piece of 10mm long shrink tubing or neoprene stretch tubing or a 10mm wide lap of PVC tape may be used (See Fig. 6).

3.6 After completing 3.1 to 3.5 on each drain wire, lay the armour / braid parallel to the cable. Then carry out instruction B.

The following instructions are the various BASEEFA approved methods of passing drain wires etc. through the compound barrier and should be followed if permitted by cable installation specifications.

DRAIN WIRE PREPARATION

1.0 INSULATING DRAIN WIRES WITH HEAT SHRINK OR COLD SHRINK TUBING

1.1 Fold back the armour / braid and bend it to right angles from the inner sheath.

1.2 Remove foils and tape level with the outer sheath, exposing the drain wires and insulated conductors. Cut back a further 10mm of inner sheath.

1.3 Pass 100mm length of heat shrink or cold shrink tubing over the drain wire until it comes into contact with the foils, then shrink the tubing evenly down onto the drain wire so that no air pockets occur.

1.4 To insulate the joint between the foils and the tubing a suitable piece of 10mm long shrink tubing or neoprene stretch tubing or a 10mm wide lap of PVC tape may be used.

1.5 After completing 1.1 to 1.4 on each drain wire, lay the armour / braid parallel to the cable. Then carry out instruction B.

2.0 INSULATING DRAIN WIRES / SCREENS WITH SEPARATE INSULATED CRIMPED CONDUCTORS OR SOLDERED CONNECTION

2.1 Fold back the armour / braid and bend to right angles from the inner sheath.

2.2 Remove a further 15mm of inner sheath (See Fig. 1).

2.3 Unravel one or two groups of wires from the screen wires, then remove the remainder of the screen wires (See Fig. 2).

2.4 Twist the group of screen wires into a pigtail and cut to 15mm long.

2.5 Crimp an insulated conductor to the pigtail with a suitable insulated butt ferrule (or soldered connection), leaving enough length of the insulated conductor to enable the remote end to be connected to the earth terminal in the equipment. (See Fig. 3). Note: There shall be a minimum of 10mm of compound on both ends of the crimped /soldered joint.

2.6 To insulate the joint between the screen wires and the insulated conductor, place one lap of PVC insulating tape over the exposed metallic joint.

2.7 After completing 2.1 to 2.6 on each drain wire, lay the armour / braid parallel to the cable. Then carry out instruction B.

3.0 INSULATING DRAIN WIRES WITH INSULATING VARNISH OR PAINT

3.1 Fold back the armour / braid and bend it at right angles from the inner sheath.

3.2 Remove the foil and tape level with the inner sheath exposing the drain wires and conductor pairs.

3.3 Cut back a further 10mm of inner sheath (See Fig. 4).

3.4 Spray or paint the drain wires with insulating varnish or paint, then leave to dry (See Fig. 5).

3.5 To insulate the foil ends a suitable piece of 10mm long shrink tubing or neoprene stretch tubing or a 10mm wide lap of PVC tape may be used (See Fig. 6).

3.6 After completing 3.1 to 3.5 on each drain wire, lay the armour / braid parallel to the cable. Then carry out instruction B.
The compound may be adversely affected by some solvent vapours. If such vapours are likely to be present in the vicinity of the cable gland in service, suitable precautions may be necessary. (Contact Hawke’s Technical Dept).

The compound cures at a Shore D hardness of 85, when it can be handled. The compound when fully cured is suitable for use at a temperature range of -60°C to +80°C.

ACCESSORIES:

Before cable gland assembly or stripping of the cable gland assembly, consideration should be given to any cable gland accessories that may be required, such as:

- Shroud, to offer additional corrosion protection.
- Locknut, to secure cable glands into position.
- Sealing washer, to offer additional ingress protection of the enclosure at the cable gland entry.
- Earthtag, to provide an external armour / braid bonding point.
- Serrated washer, to dampen any vibrations that may loosen the locknut or cable gland assembly.

CABLE GLAND SELECTION TABLE

<table>
<thead>
<tr>
<th>Size Ref</th>
<th>Entry Thread Size</th>
<th>Metric</th>
<th>NPT</th>
<th>Max. Over Cores</th>
<th>Max. Inner Sheath</th>
<th>Outer Sheath</th>
<th>Steel Wire Armour/Tape/Braid</th>
<th>Compressed Length</th>
<th>Maximum Length</th>
<th>Across Flats</th>
<th>Across Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os</td>
<td>1/4"</td>
<td>M20</td>
<td>8.9</td>
<td>10.0</td>
<td>12</td>
<td>5.5</td>
<td>12.0</td>
<td>0.8/1.25</td>
<td>0/0.8</td>
<td>67.0</td>
<td>83.0</td>
</tr>
<tr>
<td>O</td>
<td>1/2"</td>
<td>M20</td>
<td>11.0</td>
<td>12.5</td>
<td>15</td>
<td>12.5</td>
<td>20.5</td>
<td>0.8/1.25</td>
<td>0/0.8</td>
<td>67.0</td>
<td>84.0</td>
</tr>
<tr>
<td>C2</td>
<td>1/4" - 1/4"</td>
<td>M25</td>
<td>16.2</td>
<td>18.4</td>
<td>30</td>
<td>16.9</td>
<td>26.0</td>
<td>1.25/1.6</td>
<td>0/0.7</td>
<td>73.6</td>
<td>91.0</td>
</tr>
<tr>
<td>D</td>
<td>1/2" - 1"</td>
<td>M25</td>
<td>21.9</td>
<td>24.7</td>
<td>42</td>
<td>22.0</td>
<td>33.0</td>
<td>1.6/2.0</td>
<td>0/0.7</td>
<td>78.0</td>
<td>98.0</td>
</tr>
<tr>
<td>E</td>
<td>2" - 2½"</td>
<td>M25</td>
<td>47.8</td>
<td>53.5</td>
<td>100</td>
<td>46.0</td>
<td>65.3</td>
<td>1.8/2.5</td>
<td>0/1.0</td>
<td>92.7</td>
<td>124.0</td>
</tr>
<tr>
<td>F</td>
<td>2½" - 3"</td>
<td>M75</td>
<td>59.0</td>
<td>66.2/65.3</td>
<td>120</td>
<td>57.0</td>
<td>78.0</td>
<td>1.8/2.5</td>
<td>0/1.0</td>
<td>99.4</td>
<td>122.0</td>
</tr>
</tbody>
</table>

Epoxy Compound Cure Time Vs. Temperature

Fig. 7

- The compound cures at a Shore D hardness of 85, when it can be handled. The compound when fully cured is suitable for use at a temperature range of -60°C to +80°C.

SCHEDULE OF LIMITATIONS - Baseefa ATEX / IECEx:

1. These glands are suitable for use within an operating temperature range of -60°C to +80°C.

2. When the gland is used for increased safety, the entry thread shall be suitably sealed to maintain the ingress protection rating of the associated enclosure.

EU Declaration of Conformity in accordance with European Directive 2014/34/EU

Manufacturer: Hawke International

Address: Oxford Street West, Ashton-under-Lyne, OL7 0NA, United Kingdom.

Equipment: Group I Barrier Cable Glands Type: 653/UNIV

Provisions of the Directive fulfilled by the Equipment:

- Group I Category IM2 Ex dB I, Ex eb I – IP66
- Notified Body for EU-Type Examination: SGS-Baseefa 1180 Buxton UK
- EU-Type Examination Certificate: Baseefa08ATEX0329X
- Notified Body for production: SGS-Baseefa 1180 Buxton UK

On behalf of the above named company, I declare that, on the date the equipment accompanied by this declaration is placed on the market, the equipment conforms with all technical and regulatory requirements of the above listed directives.

A. Tindall

Technical Manager