INSTALLATION INSTRUCTIONS
CONVENTIONAL COMPRESSION DEADENDS
FOR ACSS CONDUCTORS

Deadend assemblies include aluminum body and steel deadend and may also include jumper terminals with mounting hardware. The standard aluminum dead end terminal pad is angled at 15°, as is the pad on the jumper terminal. This allows jumper take off at either 60° or 90° from span conductor. Steel and aluminum components are stamped with die size, manufacturing date and FARGO catalog or part number. Aluminum deadend body is also marked with conductor size and type. Jumper terminal is marked with conductor type and diameter range.

1. Prior to installation the conductor must be clean, straight and in lay. Any bend in conductor end section will tend to make the deadend body bow during compression.

2. Tensioning grip should be at least (10) feet from conductor end to reduce aluminum strand birdcaging during compression of the deadend tube. Tension grip must be of a size and type approved by the conductor manufacturer.

3. Remove the protective plastic and end caps. Be sure the bores of the fittings are clear of foreign matter. Do not remove any of the grit coating inside the steel barrel. Insert the conductor into the tapered end of the aluminum deadend body and slide the body over the conductor, allowing working room to install steel deadend on conductor core.

4. Cut-mark the aluminum strands at a distance, from conductor end, equal to the depth of the bore in the steel deadend barrel plus ¾” to 1” to allow for elongation of the barrel during compression. Tape wrap the aluminum strands on the span side of the cut mark. Expose the steel core by removing the aluminum strands to the cut mark. Do not nick the steel strands while cutting away the aluminum strands.

5. Mount the SH die set specified on steel deadend barrel in press. Lubricate die faces and steel compression barrel with suitable lubricant. Fully insert conductor core into the steel barrel, and make the first compression on the smooth portion of the steel barrel, adjacent to the ribbed section. Continue compression to the end of the steel barrel. Overlap each crimp by an amount necessary to prevent the formation of ridges between adjacent crimps, and ensure complete die closure with each crimp. To minimize bowing of the steel barrel, keep barrel well lubricated and fully seated in one die half as dies close.

6. Mark the conductor at a distance from the aluminum strand cut end equal to the distance of the conductor crimp zone on the aluminum deadend body (distance from 3rd knurl mark to open end), plus 2 inches.

7. Mount the AH die set specified on the aluminum splice body in the press.

8. If installing deadend with span under hoist tension, back off hoist to shift span tension to the fully compressed steel deadend. This will pull the conductor straight, make sliding the deadend body into place easier and minimize bowing of the aluminum deadend body as it is compressed. As hoist tension is shifted to the steel deadend, confirm that the aluminum conductor end does not move away from the steel deadend eye barrel as hoist tension is reduced. If any aluminum slip occurs, reverse it by re-applying full hoist tension.

CONTINUED ON REVERSE
9. With a clean stainless steel wire brush (V-brush type recommended), **aggressively brush** the full conductor circumference from cut-end tape wrap to the mark applied in step 6. Immediately apply a generous coat of **FARGO Hi-Temperature Joint Compound (HTJC)** over the just-brushed conductor surface. Remove tape wrap. Brush clean and coat with HTJC compound this remaining conductor area.

10. Slide the aluminum deadend body over the steel deadend until snugly against the felt washer at the forging eye collar. Remove and set aside the filler port plug.

11. With a caulking gun, inject **FARGO HTJC**, through the filler hole, until compound begins to flow out between the aluminum body and the felt washer. (See table below for approximate amount of compound required per deadend body). Hammer the aluminum plug into the filler port hole and peen plug end flush with aluminum barrel.

12. Lubricate AH die faces and deadend body between the set of knurl marks nearest the steel eye end with light-weight oil or clean plastic wrap material. (If plastic used as lubricant, ensure that it wraps completely around the splice tube, fully covering both die face during each compression.

13. Rotate the aluminum body to get the required jumper pad position with respect to the steel eye. Firmly seat deadend body in one die half and make the first compression at the knurl nearest the felt washer and continue compressions to the second knurl mark. Overlap each crimp by an amount necessary to prevent the formation of ridges between adjacent crimps.

14. Move press to the third knurl mark. Continue aluminum compression to the span end of the deadend body. Keep the compression zone well lubricated and keep aluminum body seated in one die half as dies close.

15. Remove the hoist and tension grip(s) and spray the conductor in the area where the grip(s) had been applied with WD40 or equivalent penetrating lubricant. This will help the conductor strands to slide into the span as deadend compression is completed, minimizing strand birdcaging.

NOTE: DO NOT CRIMP DEADEND IN THE REVERSE DIRECTION

16. Using a wood or rubber mallet tap the conductor strands in the areas where the grips had been to loosen strand-to-strand binding caused by tension grip pressure. This will help work expanded strand (birdcage) out into the span.

17. As compressions are completed, wipe off excess joint compound as it is expelled from the deadend body. Remove any die flash and file or sand for a smooth appearance.

18. Refer to separate instruction sheet for installing the jumper loop terminal. Deadends installed at EHV will require terminal pad shielding if installed without jumpers. See separate instructions sheet supplied with jumper terminals.

FARGO Hi-Temperature Joint Compound (HTJC) required (in pounds per fitting)

<table>
<thead>
<tr>
<th>Catalog Series</th>
<th>Fitting Type</th>
<th>Aluminum (AH) Die Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>12 / 15 Sgl./Dbl. DE body</td>
<td>0.03</td>
<td>0.05</td>
</tr>
</tbody>
</table>