

## PRODUCT GUIDE

# **Grounding Braid**







### What is a Burndy Braid?

Burndy braid is utilized to create flexible electrical connections between stationary equipment, components and a grounding system. An advantage of braid is that it may be utilized to provide a low resistance path to ground to ensure safety and to protect electrical equipment from fault currents.

Burndy braid is manufactured from high conductivity copper strands that allow high currents to flow and efficiently dissipate heat. Then the copper strands are terminated by two ends made of compressed copper tubing with drilled stud holes known as ferrules. In the industry, we often refer to braid as a grounding braid or flexible braid. Burndy offers braids in various configurations to suit your installation requirements and applications.

Braid is incredibly versatile with multiple variations and can be adapted for use in most any application.



## Burndy UL Listed and CSA Certified braids available in many different sizes and hole patterns

#### More capabilities than ever.

- Maximum width 4"
- Customizable Braid Length
- Ferrule Thickness up to 1.00"
- Customizable Hole Patterns
- Competitive Pricing
- UL Listed & CSA Certified Solutions
- Available in many different sizes and styles
- Tin Plated Braid
- Ferrules available unplated, tin plated, or silver plated with many hole drilling options









## **Braid Numbering System**

Below is a guide on the basics of our Braid Numbering System. Please note that other sizes, materials, and options may be available. Contact the factory for more information.



#### **Braid Cable Size Chart**

| Braid Type | Equivalent Circular<br>Area (kcmil) | Equivalent<br>AWG Size | Weight per<br>Foot (lb) |  |
|------------|-------------------------------------|------------------------|-------------------------|--|
| BB024L     | 24.1                                | #6                     | 0.09                    |  |
| BB036L     | 36.2                                | #5                     | 0.10                    |  |
| BB048L     | 48.0                                | #3                     | 0.14                    |  |
| BB067L     | 67.2                                | -                      | 0.23                    |  |
| BD         | 76.8                                | #1                     | 0.27                    |  |
| BB100L     | 100.8                               | 1/0                    | 0.36                    |  |
| BE         | 153.6                               | 3/0                    | 0.59                    |  |
| BF         | 230.4                               | 4/0                    | 0.78                    |  |
| BG         | 307.2                               | 300 kcmil              | 1.11                    |  |

Custom lengths available.

Contact the factory for more information.

## **Common Braid Variations**

#### **Ferrule Drilling**

- Undrilled
- Elongated (Slotted) Holes
- Special Hole Patterns and Location
- Metric
- NEMA

#### **Ferrule Plating**

- Tin
- Silver
- Nickel
- Unplated

#### **Braid Length**

- Jumper (overall)
- Ferrule(s) Contact

#### Covered

- Tubular
- Heat Shrink

#### **Split Braid Assemblies**

- Stacked
- Side by Side

#### **Multiple Ferrules**

#### **Preformed Configurations**

- Offset Contact Surfaces
- Angular (e.g.: 90°, 180°) Bends
- Ferrule contact surfaces rotated 90° on braid axis

#### **Combined Braid Assemblies**

#### **Combined Connector - Braid Assemblies**

#### **Ferrule Variations**

- Belled / Unbelled
- Width / Thickness
- Contact Length
- Special Shaping
- Bent at Angle°

#### **High Ampacity Requirements**



#### **Type B** 1-Hole Ferrule End

| Braid Family | AWG<br>Equivalent | *Approximate Ampere Rating |        |        |  |
|--------------|-------------------|----------------------------|--------|--------|--|
|              |                   | ∆ 30°C                     | ∆ 45°C | ∆ 60°C |  |
| BB024L       | #6 AWG            | 80                         | 95     | 110    |  |
| BB036L       | #5 AWG            | 105                        | 125    | 145    |  |
| BB048L       | #4 AWG            | 125                        | 155    | 175    |  |
| BB067L       | #2 AWG            | 155                        | 185    | 210    |  |
| BD           | #1 AWG            | 175                        | 210    | 240    |  |
| BE           | 3/0 AWG           | 280                        | 335    | 385    |  |
| BF           | 4/0 AWG           | 355                        | 425    | 485    |  |
| BG           | 300 kmcil         | 435                        | 520    | 590    |  |



#### Type B

2-Hole Ferrule End

| Braid Family | AWG<br>Equivalent | *Approximate Ampere Rating |        |        |  |
|--------------|-------------------|----------------------------|--------|--------|--|
|              |                   | ∆ 30°C                     | ∆ 45°C | ∆ 60°C |  |
| BD           | #1 AWG            | 175                        | 210    | 240    |  |
| BE           | 3/0 AWG           | 280                        | 335    | 385    |  |
| BF           | 4/0 AWG           | 355                        | 425    | 485    |  |
| BG           | 300 kcmil         | 435                        | 520    | 590    |  |
| B2D          | #1 AWG            | 255                        | 310    | 350    |  |
| B2E          | 3/0 AWG           | 425                        | 510    | 580    |  |
| B2F          | 4/0 AWG           | 555                        | 665    | 755    |  |
| B2G          | 300 kcmil         | 685                        | 825    | 935    |  |
| B3D          | #1 AWG            | 325                        | 395    | 450    |  |
| B3E          | 3/0 AWG           | 560                        | 670    | 760    |  |
| B3F          | 4/0 AWG           | 735                        | 885    | 1005   |  |
| B3G          | 300 kcmil         | 920                        | 1105   | 1255   |  |
| B4D          | #1 AWG            | 390                        | 475    | 540    |  |
| B4E          | 3/0 AWG           | 680                        | 820    | 930    |  |
| B4F          | 4/0 AWG           | 926                        | 1095   | 1245   |  |
| B4G          | 300 kcmil         | 2260                       | 1380   | 1560   |  |



\*Approximate ampere ratings are calculated values based on a free air environment with a 30°C ambient temperature. These ratings are approximate and vary with ambient conditions, orientation of the braid, and other service conditions.

## **Type BB-M-TN** 1-Hole Ferrule End

| Braid Family | AWG<br>Equivalent | *Approximate Ampere Rating |        |        |  |
|--------------|-------------------|----------------------------|--------|--------|--|
|              |                   | ∆ 30°C                     | ∆ 45°C | ∆ 60°C |  |
| BB019M       | #8 AWG            | 65                         | 80     | 95     |  |
| BB031M       | #6 AWG            | 95                         | 115    | 130    |  |
| BB049M       | #4 AWG            | 130                        | 160    | 185    |  |
| BB059M       | #3 AWG            | 145                        | 175    | 200    |  |
| BB069M       | #2 AWG            | 160                        | 195    | 220    |  |
| BB099M       | #1 AWG            | 205                        | 245    | 280    |  |
| BB139M       | 2/0 AWG           | 250                        | 300    | 345    |  |
| BB197M       | 3/0 AWG           | 330                        | 395    | 450    |  |





#### Type B-4N

Used in Power Distribution Applications, Braid with 4-Hole NEMA Pad

| Catalog<br>Number | Cross Sectional Braid<br>Area Construction<br>(kcmil) (W X H) | Braid  | *Approximate Ampere Rating |        |      |
|-------------------|---------------------------------------------------------------|--------|----------------------------|--------|------|
|                   |                                                               | ∆ 30°C | <b>△ 45°C</b>              | ∆ 60°C |      |
| B22F184N          | 921.6                                                         | 2 x 2  | 945                        | 1135   | 1290 |
| B22G184N          | 1228.8                                                        | 2 x 2  | 1165                       | 1400   | 1585 |
| B23F184N          | 1382.4                                                        | 2 x 3  | 1230                       | 1475   | 1670 |
| B23G184N          | 1843.2                                                        | 2 x 3  | 1525                       | 1830   | 2070 |
| B24F244N          | 1843.2                                                        | 2 x 4  | 1495                       | 1795   | 2035 |
| B24G244N          | 2457.6                                                        | 2 x 4  | 1865                       | 2235   | 2530 |
| B32F364N          | 1382.4                                                        | 3 x 2  | 1330                       | 1595   | 1810 |
| B32G364N          | 1843.2                                                        | 3 x 2  | 1635                       | 1960   | 2215 |
| B33F364N          | 2073.6                                                        | 3 x 3  | 1705                       | 2045   | 2315 |
| B33G364N          | 2764.8                                                        | 3 x 3  | 2105                       | 1520   | 2855 |

\*Approximate ampere ratings are calculated values based on a free air environment with a 30°C ambient temperature. These ratings are approximate and vary with ambient conditions, orientation of the braid, and other service conditions.

## Ampacity of the Burndy Braid

Flexible copper braid generally has greater heat dissipation properties than flat bar, cable, or other conductors, and can be expected to have a greater current carrying capacity for given cross-sectional area. This is due to its greater surface area resulting from the woven construction of fine strands. However, ventilation, due to the vertical convection current of air, is appreciably better when the long axis of the braid is vertical rather than horizontal, so that the long sides of the braid, rather than the edges, are exposed to the moving air. This is particularly true when spaced braids are used in multiple as can be seen by comparing Figure 1 and 2.

To take full advantage of ventilation, the cooling convection current of air should be permitted to flow freely between the braids. Therefore, if possible, the braids should be spaced apart, rather than bunched together, as illustrated in Figure 3. The effectiveness of spacing is, of course, greater when the braids are in a vertical position.



## **Ampacity Calculation**

Calculating the ampacity of a braid is very complex as it is dependent on several variables. Some of these variables include, but are not limited to, size, braid orientation, braid material, number of stacked braid straps and other various operating environmental conditions such as ambient temperature, allowed operating temperature, and air flow (enclosure vs. open free air or forced air convection), and AC vs. DC current.

The chart below is a reference to utilize to select the proper braid for your amperage needed. Each of the braid types represented below is a single strap. It is assumed that the braid is in a horizontal position, is in free air, and the ambient temperature is 30°.



#### Braid Amperage for Temp Rise Over Ambient Temp

## **Ampacity Calculation**

## Calculating thermal energy produced and thermal energy dissipated

 $\mathbf{E}_{in} = \mathbf{I}^2 \mathbf{X} \mathbf{R}$ 

I = current R = resistance =  $\frac{\rho L}{A}$ 

 $\rho$  = resistivity of the conductor

L = length of conductor

 $A_c = cross sectional area of the conductor$ 

 $\mathbf{E}_{out} = \mathbf{Q}_{conv} + \mathbf{Q}_{rad}$ 

Q<sub>conv</sub> = heat dissipated due to convection

 $Q_{rad}$  = heat dissipated due to radiation

#### Calculating heat dissipation via convection

$$\begin{split} \mathbf{Q}_{conv} &= \left[\mathbf{h}_{v} * \mathbf{A}_{v} * \left(\mathbf{T}_{c} - \mathbf{T}_{a}\right)\right] + \left[\mathbf{h}_{ht} * \mathbf{A}_{ht} * \left(\mathbf{T}_{c} - \mathbf{T}_{a}\right)\right] + \left[\mathbf{h}_{hb} * \mathbf{A}_{hb} * \left(\mathbf{T}_{c} - \mathbf{T}_{a}\right)\right] \\ h_{v} &= \text{vertical convection coefficient of free air } \frac{W}{m^{2}K} \\ h_{ht} &= \text{horizontal convection coefficient of bottom surface of free air } \frac{W}{m^{2}K} \\ h_{bb} &= \text{horizontal convection coefficient of bottom surface of free air } \frac{W}{m^{2}K} \\ A_{v} &= \text{vertical surface of conductor } (m^{2}) \\ A_{ht} &= \text{top horizontal surface area of conductor } (m^{2}) \\ A_{bb} &= \text{bottom horizontal surface area of conductor } (m^{2}) \\ T_{a} &= \text{ambient temperature } (K) \\ T_{c} &= \text{conductor operating temperature } (K) \end{split}$$

#### Calculating heat dissipation via radiation

 $Q_{rad} = \sigma x e (T_{c}^{4} - T_{a}^{4}) x A$ 

 $\sigma$  = Stefan – Boltzmann Constant = 5.6073 x 10 – 8 ( $\frac{W}{m^{2}K}$ )

e = emmisivity (material property)

 $T_c$  = conductor operating temperature (K)

 $T_a$  = ambient temperature (K)

A = surface area of conductor  $(m^2)$ 



**Orientation: horizontal** 

## **Ampacity Calculation**

#### **Calculating ampacity**

 $E_{in} = E_{out}$  $I^2 \times R = Q_{rad} + Q_{conv}$  $|^2 = \frac{Q_{rad} + Q_{conv}}{D}$  $I = \sqrt{\sigma \times e(T_c - T_a) \times A) + [h_v * A_v * (T_c - T_a) + [h_{ht} * A_{ht} * (T_c - T_a)] + [h_{hb} * A_{hb} * (T_c - T_a)]}$ ρL Δ Where:  $\sigma$  = Stefan - Boltzmann Constant = 5.6073 x 10 - 8  $\rho$  = resistivity (70°C operating temp.) = 2.0524 x 10<sup>-8</sup> ohm (m) L = length of conductor = 0.3048 m $A_c$  = cross section area of the conductor = 0.00064516 m<sup>2</sup>  $H_{u}$  = vertical convection coefficient of conductor = 5.5262  $H_{ht}$  = horizontal convection coefficient of top surface of free air = 0  $H_{bt}$  = horizontal convection coefficient of bottom surface of free air = 0  $A_{y}$  = vertical surface area = 0.063266 m<sup>2</sup>  $A_{ht}$  = horizontal surface area of top surface of conductor = 0.001935 m<sup>2</sup>  $A_{ht}$  = horizontal surface area of bottom surface of conductor = 0.001935 m<sup>2</sup>  $T_{amb}$  = ambient temperature = 313.15 (K)  $T_{cond}$  = conductor temperature = 343.15 (K) e = emissivity = 0.4A = surface area of conductor =  $0.067097 \text{ m}^2$ 

> NOTE: For this example braid size and application, H<sub>th</sub> and H<sub>th</sub> are both 0 due to small surface area.





We provide a wide range of braids for all your connector needs and electrical connections to meet every one of your grounding and power needs.

#### **GET IN TOUCH:**



International (603) 647-5299

Canada (800) 465-7051



www.hubbell.com/burndy



47 East Industrial Park Drive Manchester, NH 03109

©2025 Burndy. All rights reserved. Hubbell and the Hubbell logo are registered trademarks or trademarks of Hubbell

