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Aclara RF Phase Detect
How Aclara is using smart meters, RF communications, and 
mathematics to automatically calculate the phase of your meters.



Let’s suppose on Day 0, your network model – the 
map your engineering team keeps of the distribution 
network wiring in all its detail – is a perfect 
representation of the truth of your actual network. 
You know with 100% confidence the wiring phase of 
every one of your electric meters. Then a severe storm 
comes through and knocks out power to many of your 
customers. Your line crews do their best to restore 
power but when the dust has settled and all your 
customers are turned back on, you no longer have that 
100% confidence in your model. Then, before you can 
correct the mistakes, another storm comes through 
and, again, the wiring changes. After several iterations 
of this, you can see how that formerly perfect model 
has been degraded. It becomes a battle between 
your engineering modeling team and nature. Our 
own informal survey of utilities is that in practice the 
network model is about 85% accurate.

But so what if the model is only 85% accurate? Why 
should you care about the 15% of meters that are 
mapped incorrectly? The most pressing reason is that 
it causes your load balancing to be imperfect which 

leads to efficiency loss. The more severe the mismatch 
the higher the loss. In effect that 15% error is eating 
into your margin.

There is a more critical problem, though, that until 
recently seemed to be in the distant future: There 
are a lot of new distribution analysis and automation 
applications emerging that require the network model 
to be nearly 100% accurate. Some of these are outage 
management techniques, designed to combat the 
difficulties in maintaining and restoring power in 
the changing climate. Many others offer solutions to 
problems brought on by the increasing prevalence 
of electric vehicles and distributed energy resources. 
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If you’ve been living with the 15% 
model error until now, chances 
are you will soon find yourself 
needing to correct it. 

There’s little disagreement that it’s getting harder and harder for electricity providers to keep the lights on. 
2023 set a record for infrastructure damage in the U.S. due to severe storms. This was no anomaly. Storms have 
been increasing in both quantity and strength for several decades now. Warmer air temperatures combined 
with warmer ocean temperatures leads to more water in the air. That’s more energy that can be released when 
conditions are right. If this trend continues, and there is no reason to think it won’t, 2023 will soon look like an 
average year.

In this environment it is difficult to keep an accurate model of the distribution network. In the aftermath of a 
storm the distribution utility’s highest priority is to restore power as quickly as possible. The lineworkers on 
the front lines aren’t so concerned with matching the network reality with the topology map in the engineering 
office, particularly if a new configuration means they can restore power more quickly.
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Nearly all of these applications assume that the 
topology of the network is known.

If you’ve been living with the 15% model error until 
now, chances are you will soon find yourself needing 
to correct it. This could be an expensive proposition. 
Manually checking the wiring phase on each meter 
requires visiting each meter with a line crew. Just doing 
this once is in most cases prohibitively expensive. 
If you are required to do it after each storm, it’s 
downright impossible. Wouldn’t it be nice if there 
were a way to use your existing capital to do it 
automatically?

Automatic phase detection of electric meters can be 
approached in one of two ways: either as a topology 
estimation problem or as an angle estimation problem. 
This is illustrated in Fig. 2 (left side image), where a 
very small, 7-load three-phase feeder is depicted. The 
feeder splits into three laterals, each single phase. The 
defining characteristic of a three-phase network is 
that each of these laterals is fed by a 60 Hz voltage 
waveform that is 120 degrees out of phase with the 
other two laterals. The voltage waveforms for each 
of the three laterals (henceforth simply referred to as 
“phases”) are demonstrated on the right-side image of 
Fig. 2.

You can see from this depiction that if you know the 
phase of a meter, you know the lateral that it is on and 
vice-versa. This applies to all the meters on the feeder 
except for those on the three-phase section of the 

line near the feeder. So, in most cases, the problems 
of angle estimation or topology estimation are the 
same. We have chosen to address the problem as an 
angle estimation problem. In this way, we can directly 
observe which wiring phase the meters are connected 
to, and we can discern phase on three phase sections.

 
UNPRECEDENTED PRECISION 

Phase detect will become your go-to topology 
mapping tool

Our patented technology uses Aclara’s point-to-
multipoint communications network to implement 
a time-synchronized measurement across all your 
network’s smart meters. By establishing a common 
time across all meters, the relative angles of each of 
the voltage waveforms can be measured directly. We 
have found that in practice this is done with surprising 
precision: far less than 1° error.

Consider the same simple distribution network as in 
Fig. 2, redrawn in Fig. 3. Let’s say this network uses 
Aclara RF, which uses a modem on every meter that 
can communicate with collectors, typically mounted 
to poles. The collectors feed the data they collect from 
the meters to the cloud, so each meter only needs to 
talk to one collector. In practice, though, most meters 
are able to communicate with at least two collectors, 
often more. 

The phase detection process kicks off by having 
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Figure 2: The left-side image depicts a small, 12-load three-phase feeder. A substation feeds three meters connected to a three-phase 
medium voltage line. The feeder splits into three laterals, each single phase. Dashed lines indicates that the engineering model for 
the network show incorrect connections. The rightside image shows the voltage waveforms for each of the three laterals (phases) and 
their corresponding phasor representation. These images demonstrate that if you know the phase of a meter, you know the lateral that 
it is on, and vice versa.



Figure 3: The same distribution network of Fig. 1. This illustrates how a modem on each meter communicates with the pole-mounted 
collector unit, which feeds data into the cloud. Phase detection begins when each collector transmits a signal, or beacon.

each collector transmit a signal, called a beacon, 
one-by-one. When a meter receives a beacon from 
any collector it makes a measurement of its voltage 
waveform. When each collector has transmitted exactly 
one beacon every meter should then have at least one 
measurement set in its memory. Many will have more 
than that. All the measurements from every meter are 
transmitted back to the cloud via the collectors. These 
data are then processed by an algorithm and the phase 
of each meter is provided. The calculation happens 
shortly after the data are collected and uses only the 
measurements that were collected from the beacons 
just transmitted. Meter phases can be determined 
quickly and on demand.

We have given each meter a name: M with a unique 
subscript. Similarly, we will call the collectors C with 
a unique numerical subscript. We connect two nodes 
in this diagram by an edge if that meter responded to 
a beacon from that collector. So, for example, Meter 
4 responded to beacons from collector 1. Meter 0 
responded to beacons from collector 1 and collector 2. 
Meter 6 responded to collector 3 and collector 2.

Every meter, except for meter 0, has an unknown 
phase angle, designated as Θ, associated with it. We 
will say that meter 0 has a known phase of A and that 
its voltage waveform angle is therefore 0 degrees. 
Henceforth, we will call this the reference meter. 
This is the one meter on your network for which you 
are certain of the phase. The problem for the cloud 
calculation is then to compute the other six phase 
angles from the beacon data.

Let’s rearrange Fig. 3 so that all the collector nodes 

are in one column and all the meters are in another 
column. We will keep the edges the same. This is 
shown in Fig. 4. This arrangement should look familiar 
to students of artificial intelligence for it resembles 
a neural net. While we don’t use a neural network 
specifically, we do use a technique very closely related 
to it called belief propagation. This, along with neural 
nets and other graphical processing methods, are part 
of an emerging set of graphical processing algorithms 
that have shown to be extremely adept at solving 
problems robustly where large amounts of interlocking 
data and unknowns are involved. This fits our problem 
perfectly because in reality there will be hundreds of 
collectors and tens, if not hundreds of thousands, or 
even millions of meters.

The actual representation would be extremely large, 
far larger than we could depict here, with even more 
edges crossing each other in a big mess. While we as 
humans would have a hard time visualizing it, it turns 
out to be very easy to depict programmatically in a 
computer algorithm.

Let’s look at how belief propagation works. Next to 
each meter node we will write out initial knowledge 
of that meter’s phase, as shown in Fig. 4. For the 
reference meter we know that it’s on Phase A. Every 
other meter has an unknown phase so we will put a “?” 
next to each of them.

Each meter node will send a message to all the 
collectors that it is connected to. This is not a 
real message in the sense that meters transmit to 
collectors in the communication network. Rather, 
it is a mathematical message within the algorithm 
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that abstract versions of the meters and collectors 
communicate with each other. It’s very similar to how 
a neural net works, if you imagine each node is a 
neuron and sends synapses to other neurons that it 
is connected to. If we are certain of a meter’s phase, 
we send a message that relays that certainty. If we are 
not, then the message communicates the nature of the 
confusion.

After all meter nodes have sent their messages to the 
collector nodes, a calculation is done on each collector 
node to best resolve the ambiguity between the meter 
nodes it has received messages from. Corrections to 
each meter node’s current phase estimates are then 
sent back to the meter nodes, again as mathematical 
messages. The correction calculations are performed 
on each meter node using the messages from multiple 
collectors. Often there will still be some ambiguity at 
each of the meter nodes. However, it will be less than 
the ambiguity that existed before the process started. 
That ambiguity can be further reduced by repeating 
the process: the meter nodes transmit messages to 
the collector nodes, and the collector nodes back to 
the meter nodes. After a few iterations of this, the 
ambiguity will be gone and a solution will have been 
arrived at. We can write the estimated phase of each 
meter beneath the initial estimate.

It’s not much of a simplification to say that the process 
of learning in the human mind is that of creating new 
connections between neurons. The more connections a 
neural net has, the more robust it performs. The same 
phenomenon is at work here. What makes this method 
work so well is that each meter node is connected to 
multiple collector nodes. Recall that these connections 
symbolize communication in real life between the 
meter and the collector. It is the point-to-multipoint 
feature of the Aclara RF communication network 
combined with multiple redundancies that provides 
this robustness. In fielded deployments, we’ve found 
that this method fails less than 1% of the time.

 
PRACTICAL ROBUSTNESS 

Phase detect works under some of the harshest 
conditions you will experience

As we’ve already noted, our own informal surveys 
suggest that your existing phase models are probably 
already at least 85% correct or more. This is not the 
scenario we’ve outlined in the discussion above. Recall 
that in our belief propagation graph (Fig. 4) under 
initial estimate, our reference meter is phase “A” but 
all the others are “?”. By this we have modeled a 
scenario in which we have complete uncertainty about 
every meter except the reference meter. It’s as if we 
are saying that there is an equal probability of these 
meters being on Phase A, B, or C. This is a far cry  
from the 85% certainty you likely have in your existing 
phase maps.

From a mathematical perspective, this means there 
is already a great deal of information in your existing 
topology that we are ignoring. The challenge is 
determining which 15% of your smart meters are 
mapped incorrectly and what the correct phasing 
should be. If we can only label our initial estimates 
as “A”, “B”, “C”, or “?”, how can we indicate partial 
certainty?

Fortunately, belief propagation permits a solution. In 
the graph shown in Fig. 5, we have changed the initial 
estimate for each meter node to a set of probabilities. 
Meter 1, for example, is estimated to be on Phase B 
with 85% certainty. If the network model is in error, 
though, we say that there is an equal chance of it being 
on Phase A or C: 7.5% each. We have indicated this as a 
bar graph where the height of the bars for each phase 
indicates our initial certainty in the network model’s 
reported phase for that meter.  

One of the most elegant features of belief propagation 
is that it permits the passing of messages containing 
probabilistic data. We may use the same iterative 
message passing algorithm described in the previous 
section, but with probabilistic messages. After several 
iterations, the algorithm converges to a solution that 
blends the data collected from the beacons with the 
existing network model in the most harmonious way. 
By bringing in information from the existing model, we 
have further improved the precision of the algorithm!
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Figure 4: Here, the network from Fig. 2 is shown in a simplified 
view. In this configuration, it resembles an artificial intelligence 
neural net. While the arrangement is similar, the technique used 
for phase detection is called belief propagation. It is similar to 
other graphical processing algorithms that solve problems using 
interlocking data sets.
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Figure 5: This depiction of belief propagation shows the 
technique’s ability to permit messages containing probabilistic 
data. Here, the Initial Estimate for each Meter node (M) is now 
a set of probabilities. The height of the bar shown indicates the 
initial and final certainty in the reported and computed phase  
for that meter.

You may have noticed that even the reference meter 
has been permitted some ambiguity. In fact, it is 
initialized with the same uncertainty that all the other 
meters have been initialized with. The not-so-obvious 
implication of this is that we really don’t need reference 
meters at all. This is a surprising outcome that we 
did not anticipate in design but rather discovered by 
accident when a reference meter stopped reporting 
data during a test of the algorithm, and we were able 
to produce accurate meter phases regardless.

There are other advantages as well. If the algorithm is 
having a difficult time computing a solution or some 
source of ambiguity exists, the final calculation will 

show that uncertainty. This is reported to you as a user 
by a confidence figure returned with each meter’s 
phase calculation. Often that ambiguity can be used 
to track down other systemic problems, whether they 
arise from meter or communications issues, or actual 
distribution network issues that may otherwise have 
remained hidden.

OPPORTUNITIES FOR GROWTH 

Phase detect generates data that is unique among  
AMI networks

Underneath the hood, each of the meters is measuring 
the phase angle of the voltage sinusoids relative to 
each other at the instant a beacon is received. This 
is demonstrated in Fig. 6. For model correction it is 
only necessary to measure this to within about 15 
degrees, but our analyses of deployments at existing 
utility networks have shown accuracy far better than 
that. Transmission engineers have understood the 
value of simultaneous phase angle measurements – or 
synchrophasors – for some time now. However, this is 
just starting to show value in distribution networks, 
largely due to the proliferation of EVs and IBRs. Our 
study of reported phase angels from trial deployments 
has given us some insight into just how valuable this 
data could be for distribution networks.

In Fig. 7, we have plotted the phase angles reported 
by our phase detect product for a set of about 400 
meters that all tuned out to be on Phase A. For this 
experiment, the system was configured to calculate 
phase once per day, so we have one value for each 
meter each day over a period of one month. It is 
important to point out here that prior to this it was not 
possible to make simultaneous measurements across a 
population of smart meters. While our original purpose 
was to make synchronous measurements for the 
purpose of calculating phase, it made sense to take a 
closer look at the data, and see what it could possibly 
tell us.

The first thing that caught our attention was how 
spread out the angles from the entire population 
are over a single day: as much as 20° on some days. 
Conventional wisdom is that there should not be so 
much excursion from 0° on distribution networks. 
However, this is a wisdom that was born in analysis and 
simulation of pristine distribution networks that exist 
only on paper. Actual networks have imperfections 
and pathologies that are difficult to model and, all too 
often, are only anticipated by the teams that maintain 
them and not so much by academics. It seems there is 
value in looking at meter phase angles after all.

The plot in Fig. 8 is the same, except that the phase 
angles from each meter are color coded to indicate 
similar behavior. We produced this by running a simple 
time-series clustering algorithm. Four distinct groups 
of meters emerged, each identified by a unique phase 
angle walk over the one-month observation period.

We had access to the coordinates of each of the 400 
meters in this study. In Fig. 9, we have indicated the 
position of each on a map with color matching the 
behavioral group each belongs to in the time-series 
phase plot. It is obvious that meters are clustered 
together spatially by their phase behavior. It turns out 
that each of these clusters corresponded to different 

The not-so-obvious implication 
of this is that we really don’t 
need reference meters at all.



substations. In fact, what we have stumbled across is 
a way of identifying substation connectivity from this 
data in addition to phase connectivity.

The explanation for this derives from the similarity of 
voltage waveforms between meters that are located 
near each other topologically. Think of it this way: two 
meters on the same distribution transformer will have 
nearly identical voltage waveforms – and thus nearly 
identical voltage phase signatures over time. Those 
two meters will have similar waveforms to meters 
down the street on the same feeder, but not as similar. 
A meter on the same feeder a mile away even less  
in common.

Direct measurement of the phase angle of the 
voltage waveform at each meter is a completely new 
measurement that has not been fully considered until 
now because it was largely considered impractical if 

not impossible. Hubbell is actively engaged in research 
and development to exploit this signal for full topology 
identification. This includes both meter-to-feeder 
mapping and meter-to-transformer mapping. Based on 
results similar to those presented here, we believe this 
to be very possible.

The world is changing around us and, at times, it can 
seem as if it is getting ahead of us. We believe in the 
power of human ingenuity to adapt to those changes. 
The mathematics show that it is possible to stay 
abreast of drastic changes in your network topology 
using data from your existing assets, albeit in ways 
that you maybe haven’t thought of before. The results 
confirm the mathematics. Hubbell, by its commitment 
to applied research, is determined to make these 
advanced mathematical techniques accessible to you 
and give you the tools you need to adapt and survive.

 ACLARA.COM   | 7

Figure 6: At the instant a meter receives a beacon it measures the phase angle of the voltage waveform.  After processing of these 
angles from all meters and beacons the phase angle relative to the reference meter has been shown to be accurate to within 1°.

Figure 7: Plot of the phase angles recorded by Phase Detect for 400 meters over the course of 30 days. Each meter received one 
phase calculation per day. The plot showed that the angles from across the meter population could vary as much as 20 degrees  
over the course of one day.
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Figure 9: Using the coordinates of the 400 meters in the study, 
the map shows the position of each meter in its corresponding 
phase behavior color from Fig. 7. The map revealed that meters 
with similar phase behavior were clustered together spatially. 
Each color cluster corresponded to a different substation, 
revealing new possibilities for using the phase connectivity data 
set to identify substation connectivity.

Figure 8: The same plot of meters as Fig. 7 is shown, except the phase angles are color coded here to show similar behavior patterns. 
Bold lines are the mean of the phase angle for each group. Four distinct behavioral groups emerged from this data.
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